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Face recognition using a fuzzy fisherface classifier
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Abstract

In this study, we are concerned with face recognition using fuzzy fisherface approach and its fuzzy set based augmentation.
The well-known fisherface method is relatively insensitive to substantial variations in light direction, face pose, and facial
expression. This is accomplished by using both principal component analysis and Fisher’s linear discriminant analysis. What
makes most of the methods of face recognition (including the fisherface approach) similar is an assumption about the same
level of typicality (relevance) of each face to the corresponding class (category). We propose to incorporate a gradual level
of assignment to class being regarded as a membership grade with anticipation that such discrimination helps improve
classification results. More specifically, when operating on feature vectors resulting from the PCA transformation we complete
a Fuzzy K-nearest neighbor class assignment that produces the corresponding degrees of class membership. The comprehensive
experiments completed on ORL, Yale, and CNU (Chungbuk National University) face databases show improved classification
rates and reduced sensitivity to variations between face images caused by changes in illumination and viewing directions. The
performance is compared vis-à-vis other commonly used methods, such as eigenface and fisherface.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introductory comments

Biometrics is aimed at capturing and use of physiological
or behavioral characteristics for personal identification or in-
dividual verification purposes. Face recognition is a natural
intuitively appealing and straightforward biometric method.
Face recognition has been researched in various areas such
as computer vision, image processing, and pattern recogni-
tion. In practice, face recognition is a very difficult problem
due to a substantial variation in light direction, different face
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poses, and diversified facial expressions. The most well-
known classification techniques used for face recognition
are those of eigenface[1] and fisherface[2]. The eigenface
method relies on a transformation of feature vectors by uti-
lizing principal components (and is referred to as principal
component analysis, PCA); the other naming used there is
the Karhunen–Loeve (KL) expansion. In essence, the PCA
dwells on a linear projection of a high-dimensional face im-
age space into a new low-dimensional feature space. The
major problem coming with the use of the eigenface tech-
nique is that it can be affected by variations in illumination
conditions and different facial expressions. It is also worth
stressing that the PCA is oriented toward the representation
in low-dimensional spaces but not necessarily optimal in
terms of face classification (as the issue of discrimination
between classes is not a part of the problem formulation).
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There are numerous extensions to the standard PCA such
as mixture-of-eigenfaces[3], topological PCA[4], kernel
PCA [5], eigen-wavelet method[6], to name a few of them.
In spite of these expansions, PCA still retains unwanted
variations due to different conditions caused by lighting and
facial expressions[2].

The second well-known approach coming under the name
of fisherface is insensitive to large variation in the condi-
tions we have already enumerated above. It uses both PCA
and Fisher’s linear discriminant (FLD). It is worth stressing
that by maximizing the ratio of between-scatter matrix and
within-scatter matrix, FLD produces well separated classes
in a low-dimensional subspace, even under severe variation
in lighting and facial expressions. There are a various en-
hancements made to FLD: Enhanced FLD[7], direct linear
discriminant analysis (LDA)[8], uncorrelated discriminant
transformation[9], most discriminating feature (MDF)[10].
While these two approaches are quite a dominant, there are
a number of other techniques developed in the setting of
computational intelligence including neural networks (NN)
[11,12], fuzzy logic [13], and genetic algorithm (GA)[14].

The objective of this study is to revisit the fisherface tech-
nique (which is well established and has already enjoyed a
significant level of success) and augment it by some mecha-
nisms of fuzzy sets. By taking advantage of the technology
of fuzzy sets[19], a number of studies have been carried
out for fuzzy image filtering, fuzzy image segmentation, and
fuzzy edge detection with an ultimate objective to cope with
the factor of uncertainty being inherently present in many
problems of image processing and pattern recognition[15].
From this point of view, we address the uncertainty asso-
ciated with a significant variation in illumination, viewing
directions, and facial expression in the face images.

By analyzing the existing fisherface, we note that the al-
gorithm dwells on the concept of a binary (yes–no) class
assignment meaning that the faces come fully assigned to
the given classes (categories). Evidently, as the faces are
significantly affected by numerous environmental condi-
tions (including illumination, poses, etc.), it is advantageous
to investigate these factors and quantify their impact on
their “internal” (viz. algorithm-driven) class assignment. In
essence, the intent is to reflect all these factors in a “soft”
viz. fuzzy class allocation to the individual faces under con-
sideration. Interestingly, the idea of such “fuzzification” of
class assignment has been around for a long time and can be
dated back to the results published by Keller et al.[16] com-
ing under the notion of a fuzzyk-nearest neighbor classifier.
We envision that this concept can be used effectively to en-
hance the performance of the fisherface (in the sequel, this
new generalization will be referred to as a fuzzy fisherface).

This material is organized in the following manner. Sec-
tion 2 provides a concise summary of the well-known tech-
niques of eigenface and fisherface and introduces all re-
quired notation. This section can serve as a sound reference
point when looking at the expansion of the fisherface tech-
nique and serves as a prerequisite to the fuzzy fisherface ap-

proach outlined in Section 3. Section 4 reports on compre-
hensive simulation results completed for several commonly
used face databases such as ORL[17], Yale [18], and CNU
(Chungbuk National University). Finally, concluding com-
ments are included in Section 5.

2. Conventional face recognition methods: a brief
overview

It is instructive to summarize the main notation we are
about to use in the study. While the notation is standard to
a high extent, its careful inspection becomes advantageous
when walking through the algorithms presented in the paper.
The faces aren by n matrices and these are represented in
the form ofn2-dimensional vectorszi . The number of faces
is equal toN and they belong to “c” classes (categories).
Furthermore byZ we denote a training family of faces. The
statistical characterization of the faces is standard: byR

we denote a covariance matrix of the images,z describes a
mean image of the faces in the training set, whileei stands
for the ith eigenvector of the covariance matrix. Likewise
by SW andSB we describe a within-class and between-class
scatter matrices, respectively. To emphasize the origin of
some matrices we will be adding pertinent subscripts, say
WFLD indicates a between-class scatter matrix generated by
the Fisher’s linear discriminant technique.

2.1. Eigenface method

PCA is a well-known technique commonly exploited in
multivariate linear data analysis. The main underlying con-
cept is to reduce the dimensionality of a data set while re-
taining as much variation as possible in the data set. Let
a face image be a two-dimensionaln × n array of pixels.
The corresponding imagezi is viewed as a vector withn2

coordinates that results from a concatenation of successive
rows of the image. Denote the training set ofN faces by
Z = {z1, z2, . . . , zN }. Define the corresponding covariance
matrix in the standard manner

R = 1

N

N∑
i=1

(zi − z)(zi − z)T = ��T, (1)

where

z= 1

N

N∑
i=1

zi . (2)

Let E = (e1,e2, . . . ,er ) be a matrix formed by “r” eigen-
vectors corresponding to the “r” largest eigenvalues. Thus,
for a set of original face imagesZ, their reduced feature vec-
tors X = (x1, x2, . . . , xN) are obtained by projecting them
into the PCA-transformed space following the linear trans-
formation:

xi = ET(zi − z) (3)

with xi being the result of this transformation.
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The classification task is cast in the reduced PCA space
as all the computations of the distances are carried out there.
Given two imagesz′ andz in the originaln2-dimensional
space, a distance between them is defined in the form

�(z, z′) = ‖x − x′‖, (4)

wherex andx′ are PCA-transformed feature vectors of face
imagez andz′, respectively.

The method in the form outlined above can lead to ex-
tremely large and computationally challenging covariance
matrices. This problem can be alleviated by referring to
some basic finding known in linear algebra that states that
the eigenvalues of��T and�T� are the same. Furthermore,
the eigenvectors of��T are the same as the eigenvectors
of �T� multiplied by the matrix� and afterwards normal-
ized. This is the motivation behind the snapshot method re-
ported in the literature[1]. This algorithm is used to form
the eigenspace on a basis ofN × N matrices, which con-
stitutes a substantial reduction of problem dimensionality
originally involving n2 × n2 covariance matrices.

Let us again stress that in virtue of the PCA calcula-
tions that do not involve any class information, the method
is not capable of taking advantage of this discriminatory
aspects subsequently being faced with quite a detrimental
classification performance. To illustrate this point, let us
consider 200 two-dimensional synthetic data points belong-
ing to two classes. The data along with its one-dimensional
PCA transformation are shown inFig. 1. These two classes
are drawn from two-dimensional Gaussian probability dis-
tribution with the covariance variance matrix� and mean�,
that is

Class 1: �1 =
[

0.12 0
0 0.82

]
and �1 = [ 0 0] ,

Class 2: �2 =
[

0.012 0
0 0.82

]
and �2 = [ −1 2] .

Noticeably, the PCA projections are optimal as far as di-
mensionality reduction is concerned but the fail completely
when considered as a possible classification environment.
The two classes fully overlap and it becomes evident that
any classifier is going to fail on this task (even though the
classification in the original two-dimensional space does not
create any challenge).

2.2. Fisherface method

While PCA is commonly used to project face pat-
terns from a high-dimension image space to some low-
dimensional space, it is aimed at data representation. In a
way it defines a subspace that exhibits the greatest variance
of the projected sample vectors among all the subspaces.
However, such projection may not be effective for classi-
fication since large and unwanted variations may be still
retained. Consequently, the projected samples for each class
may not be well clustered and result in the patterns being

smeared together, cf.[2]. In contrast, the FLD or LDA is
an example of a class-specific method that finds the opti-
mal classification-driven projection of patterns. Rather than
finding a projection that maximizes the projected variance,
FLD determines a projection defined asV =WT

FLDX (where

WT
FLD denotes the optimal projection matrix). The projec-

tion takes advantage of class information and maximizes the
ratio between the between-class scatter and the within-class
scatter matrices. Consequently, the ensuing classification
mechanisms are simplified in the projected space. The fish-
erface comprises two phases: first it projects the image set
to a lower-dimensional space using PCA that is followed by
the FLD phase. The use of the LDA helps us achieve non-
singularity of the resulting within-class scatter matrixSW
prior to any computations of the optimal projectionWFLD.

Proceeding with the presentation of the fisherface ap-
proach, let the between-class scatter matrix be defined in
the usual manner

SB =
c∑

i=1

Ni(mi − m)(mi − m)T, (5)

whereNi is the number of vectors in theith classCi andm
stands for the mean of all vectors (images),mi is the mean
of vectors transformed by PCA and dealing with classCi .
The within-class scatter matrix reads as

SW =
c∑

i=1

∑
xk∈Ci

(xk − mi )(xk − mi )
T =

c∑
i=1

SWi
, (6)

whereSWi
is the covariance matrix of classCi . The optimal

projection matrixWFLD is chosen in such a manner so that
it forms a matrix with orthonormal columns that maximizes
the ratio of the determinant of the between-class scatter
matrix of the projected samples and the determinant of the
within-class scatter matrix of the projected patterns, i.e.,

WFLD = arg max
W

|WTSBW |
|WTSWW | = [w1 w2 · · · wm ] , (7)

where{wi |i=1, 2, . . . , m} is the set of generalized eigenvec-
tors (discriminant vectors) ofSB andSW corresponding to
thec−1 largest generalized eigenvalues{�i |i=1, 2, . . . , m},
that is

SBwi = �iSWwi , i = 1, 2, . . . , m. (8)

However, the rank ofSB is c−1 or less because it is the sum
of “c” matrices of rank one or less. Thus, the upper bound
on the values of “m” is equal toc − 1. Similarly, the rank
of SW is at mostN − c. For a set ofN face images ofn2

pixels, whereN is usually smaller thann2, the within-scatter
matrixSW is always singular. This means that the projected
within-scatter matrix can be zero if the projection matrix is
not chosen properly. The above problem can be avoided by
first projecting the image set to a lower-dimensional space
using PCA. Then the resulting within-class scatter matrix
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Fig. 1. PCA projection for a two-class problem: (a) original data set and (b) its reduced PCA transformation.
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Fig. 2. FLD projection for the two-class synthetic data.

SW is nonsingular and this facilitates the computations of
the optimal projectionWFLD [2].

The feature vectorsV = (v1, v2, . . . , vN) for any face
imageszi can be calculated as follows[11]:

vi = WT
FLDxi = WT

FLDET(zi − z). (9)

Alluding again to the synthetic data,Fig. 2 visualizes the
FLD transformation—noticeably the results are totally dif-
ferent and the important discriminatory properties are fully
retained.

3. Fuzzy fisherface approach

The fisherface presented in the previous section has ex-
hibited a substantial advantage over the PCA as far as clas-
sification aspects are concerned. The question arises as to
further improvements of the approach. A certain alterna-
tive that emerges is concerned with more “sophisticated”
usage of class assignment of patterns (faces). In particular,
we may envision some possibilities to refinement of clas-
sification results so that they could affect the within-class
and between-class scatter matrices and enhance the perfor-
mance of the classifier. Having this in mind, an obvious
choice is to look at the fundamental results available in the
setting of fuzzy nearest neighbor classifiers. The term of a
fuzzy partition becomes an important notion to be consid-
ered. Given a set of feature vectors transformed by the PCA,
X = {x1, x2, . . . , xN }, a fuzzy “c”-class partition of these
vectors specifies the degrees of membership of each vec-
tor to the classes. As usual, the partition matrix denoted by
U = [�ij ] for i = 1, 2, . . . , c, andj = 1, 2, . . . , N satisfies
two obvious properties

c∑
i=1

�ij = 1, (10)

0<

N∑
j=1

�ij < N . (11)

The first condition helps us assure sound mathematical
tractability. For instance, in a three class problem, the mem-
bership grades close to 0.5 indicate that the vector exhibits
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a high degree of membership to several classes, cf.[16].
The computations of the membership degrees are realized
through a sequence of steps:
Step1: Compute the Euclidean distance matrix between

pairs of feature vectors in the training.
Step2: Set diagonal elements of this matrix to infinity

(practically place large numeric values there).
Step3: Sort the distance matrix (treat each of its column

separately) in an ascending order. Collect the class labels
of the patterns located in the closest neighborhood of the
pattern under consideration (as we are concerned with “k”
neighbors, this returns a list of “k” integers).
Step 4: Compute the membership grade to class “i”

for j th pattern using the expression proposed in the
literature[16].

�ij =




0.51+ 0.49(nij /k) if i = the same as the label
of the j th pattern,

0.49(nij /k) if i �= the same as the label
of the j th pattern.

(12)

In the above expression,nij stands for the number of the
neighbors of thej th data (pattern) that belong to theith
class. After the examination of the membership allocation
formula we conclude that the method attempts to “fuzzify”
or refine the membership grades of the labeled patterns.

The “dominant” membership has not been affected (so the
pattern is not moved to a different category) yet we end up
with some refinement of membership grades. Intuitively, if
there are very few neighbors of the pattern that belong to
the same category, the membership grade is kept close to
0.51; refer to (12). Alternatively, ifnij = k meaning that
all neighbors are in the same class as the pattern under
consideration, then�ij returns 1.0 (which is an appealing
outcome).

To illustrate this method, we consider nine two-
dimensional patterns belonging to three-classes; refer also
to Fig. 3.

No. feature1 feature2 class

1 0.2 0.3 1
2 0.3 0.2 1
3 0.4 0.3 1
4 0.5 0.5 2
5 0.6 0.4 2
6 0.5 0.6 2
7 0.7 0.3 3
8 0.8 0.4 3
9 0.7 0.5 3

Proceeding with step[1], the distance matrix comes with
the following entries:

No. 1 2 3 4 5 6 7 8 9
1 0 0.1414 0.2000 0.3606 0.4123 0.4243 0.5000 0.6083 0.5385
2 0.1414 0 0.1414 0.3606 0.3606 0.4472 0.4123 0.5385 0.5000
3 0.2000 0.1414 0 0.2236 0.2236 0.3162 0.3000 0.4123 0.3606
4 0.3606 0.3606 0.2236 0 0.1414 0.1000 0.2828 0.3162 0.2000
5 0.4123 0.3606 0.2236 0.1414 0 0.2236 0.1414 0.2000 0.1414
6 0.4243 0.4472 0.3162 0.1000 0.2236 0 0.3606 0.3606 0.2236
7 0.5000 0.4123 0.3000 0.2828 0.1414 0.3606 0 0.1414 0.2000
8 0.6083 0.5385 0.4123 0.3162 0.2000 0.3606 0.1414 0 0.1414
9 0.5385 0.5000 0.3606 0.2000 0.1414 0.2236 0.2000 0.1414 0

In step[2], the diagonal elements are replaced by infinity (Inf).

Inf 0.1414 0.2000 0.3606 0.4123 0.4243 0.5000 0.6083 0.5385
0.1414 Inf 0.1414 0.3606 0.3606 0.4472 0.4123 0.5385 0.5000
0.2000 0.1414 Inf 0.2236 0.2236 0.3162 0.3000 0.4123 0.3606
0.3606 0.3606 0.2236 Inf 0.1414 0.1000 0.2828 0.3162 0.2000
0.4123 0.3606 0.2236 0.1414 Inf 0.2236 0.1414 0.2000 0.1414
0.4243 0.4472 0.3162 0.1000 0.2236 Inf 0.3606 0.3606 0.2236
0.5000 0.4123 0.3000 0.2828 0.1414 0.3606 Inf 0.1414 0.2000
0.6083 0.5385 0.4123 0.3162 0.2000 0.3606 0.1414 Inf 0.1414
0.5385 0.5000 0.3606 0.2000 0.1414 0.2236 0.2000 0.1414 Inf

In step[3], the distance matrix is sorted (which is done separately for each column of the matrix)

0.1414 0.1414 0.1414 0.1000 0.1414 0.1000 0.1414 0.1414 0.1414
0.2000 0.1414 0.2000 0.1414 0.1414 0.2236 0.1414 0.1414 0.1414
0.3606 0.3606 0.2236 0.2000 0.1414 0.2236 0.2000 0.2000 0.2000
0.4123 0.3606 0.2236 0.2236 0.2000 0.3162 0.2828 0.3162 0.2000
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0.4243 0.4123 0.3000 0.2828 0.2236 0.3606 0.3000 0.3606 0.2236
0.5000 0.4472 0.3162 0.3162 0.2236 0.3606 0.3606 0.4123 0.3606
0.5385 0.5000 0.3606 0.3606 0.3606 0.4243 0.4123 0.5385 0.5000
0.6083 0.5385 0.4123 0.3606 0.4123 0.4472 0.5000 0.6083 0.5383

Inf Inf Inf Inf Inf Inf Inf Inf Inf
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Fig. 3. Fuzzy membership degree using FKNN initialization(k=3).

If we considerk = 3 neighbors, then the indexes as-
sociated with each distance value give rise to the lists

k = 1 2 1 2 6 4 4 5 9 5
k = 2 3 3 1 5 9 5 8 7 8
k = 3 4 4 5 9 7 9 9 5 4

The classes ofith nearest point ofj th input vector are as
follows:

1 1 1 2 2 2 2 3 2
1 1 1 2 3 2 3 3 3
2 2 2 3 3 3 3 2 2

Realizing step[4], the computed membership grades are
given as

0.8367 0.1633 0
0.8367 0.1633 0
0.8367 0.1633 0

0 0.8367 0.1633
0 0.6733 0.3267
0 0.8367 0.1633
0 0.1633 0.8367
0 0.1633 0.8367
0 0.3267 0.6733

To help further clarify the origin of these numbers, let
us consider membership grades (0 0.6733 0.3267) of the

5th sample point (that is labeled to belong to class 2). The
membership degrees resulting from the calculations (12) are
given as

(1) Class 1�= assigned class 2, 0.49(nij /k)=0.49(0/3)=
0,

(2) Class 2=assigned class 2, 0.51+0.49(nij /k)=0.51+
0.49(1/3) = 0.6733,

(3) Class 3�= assigned class 2, 0.49(nij /k)=0.49(2/3)=
0.3267.

The above class refinement is intuitively appealing as re-
vealed inFig. 3. In particular, we note that some patterns
become somewhat split between the two classes which is a
useful sign of alert pointing out at possible revision of the
binary membership allocation.

The results of the FKNN are used in the computations
of the statistical properties of the patterns such as the mean
value and scatter covariance matrices—the constructs being
at heart of the fisherface method. Taking into account the
membership grades, the mean vector of each classm̃i is
calculated as follows:

m̃i =
∑N

j=1 �ij xj∑N
j=1 �ij

, (13)

i = 1, 2, . . . , c. The between-class fuzzy scatter matrixSFB
and within-class fuzzy scatter matrixSFW incorporate the
membership values in their calculations

SFB =
c∑

i=1

Ni(m̃i − m)(m̃i − m)T, (14)

SFW =
c∑

i=1

∑
xk ∈Ci

(xk − m̃i )(xk − m̃i )
T =

c∑
i=1

SFWi
. (15)

The optimal fuzzy projectionWF-FLD and the feature vector
transformed by fuzzy fisherface method follows the expres-
sions:

WF-FLD = arg max
W

|WTSFBW |
|WTSFWW | , (16)

ṽi = WT
F-FLDxi = WT

F-FLDET(zi − z). (17)
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Fig. 4. Comparison of recognition results: (a) eigenface, left: test
image (class 5), right: recognized image (class 12), (b) fisherface,
left: test image (class 5), right: recognized image (class 12), (c)
fuzzy fisherface, left: test image (class 5), right: recognized image
(class 5).

Referring toFig. 3, we note that the mean vectors computed
with binary class assignment and membership grades are
different

m̃1 =
[

0.3195
0.2943

]
, m̃2 =

[
0.5242
0.4355

]
, m̃3 =

[
0.6964
0.4127

]
,

m1 =
[

0.3000
0.2667

]
, m2 =

[
0.5333
0.5000

]
, m3 =

[
0.7333
0.4000

]
.

Through a direct inspection, one can conclude that the fuzzy
means are shifted closer each other. The between-class fuzzy
scatter matrix and within-class fuzzy scatter matrix are ob-
tained by fuzzy FLD as follows:

SFW =
[

0.1250 0.0217
0.0217 0.0969

]
, SFB =

[
0.1904 0.0604
0.0604 0.0319

]
.

For comparison, the binary class allocation yields the results

SW =
[

0.0333 −0.0100
−0.0100 0.0466

]
, SB =

[
0.2822 0.0922
0.0922 0.0822

]
.

Finally, the optimal projection of the proposed method and
FLD are obtained, respectively.

WF-FLD =
[

0.9769
0.2135

]
, WFLD =

[
0.9081
0.4185

]
.

The following example coming from Yale face database
[18] illustrates how the proposed method improves the
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Fig. 6. A general flow of computing for the fuzzy fisherface method.

performance of the classification process.Fig. 4 shows
results obtained using eigenface, fisherface, and the pro-
posed method in respectively. As shown there, the mis-
classification results occur due to large variation in light
direction. The fuzzy fisherface approach comes with bet-
ter performance. The membership degrees are shown in
Fig. 5.

Finally, a general flowchart of computing for the fuzzy
fisherface is included inFig. 6. The number of neighbors (as
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Fig. 7. Samples of face image in three face databases: (a) ORL face database, (b) Yale face database, (c) CNU face database.

indicated in this flowchart) is usually experiment—driven
and needs to be adjusted for a specific dataset at hand.

4. Experimental studies

In this section, we elaborate on the experimental find-
ings for a number of well-known and commonly used face
databases as shown inFig. 7. In all scenarios we contrast the
results of the fuzzy fisherface approach with the previous
techniques.

4.1. ORL face databases

The ORL database[17] comprises 400 face images com-
ing from 40 individuals; the pictures were taken in different

environments. The total number of images for each indi-
vidual is equal to 10. These images vary in position, rota-
tion, scale, and facial expression. For some individuals, the
images were taken at different times, varying facial details
(glasses/no glasses). Each image was digitized and stored as
an 112×92 pixel array whose gray levels ranged between 0
and 255. Some samples from the ORL databases are shown
in Fig. 7(a). The training and testing set are selected ran-
domly by choosing for each subject three cases:

Case 1: number of training set for one person: 5, test
set: 5.

Case 2: number of training set for one person: 4, test
set: 6.

Case 3: number of training set for one person: 6, test set: 4.
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Fig. 8. Fisherfaces obtained by the fuzzy fisherface method: (a) ORL, (b) Yale, (c) CNU.

Table 1
Comparison of mean and standard deviation for recognition rates
(ORL)

Eigenface Fisherface Fuzzy fisherface
(PCA) (%) (PCA+ LDA ) (Fuzzy+ PCA+

(%) LDA) (%)

Case 1 93.6 ± 2.55 95.1 ± 2.10 95.5 ± 1.99
Case 2 96.12± 1.52 97.37± 0.87 98.37± 0.89
Case 3 91.87± 1.11 92.54± 1.45 94.12± 1.63

This procedure was repeated 10 times by randomly choos-
ing different training and testing sets. Here, we determined
60 eigenvectors representing the best performance in ten ex-
periments. The number of discriminant vectors correspond-
ing to thec − 1 largest generalized eigenvalues is 39.Fig.
8(a) includes some of the fisherface image obtained by the
proposed method. The recognition rates for various experi-
ments are shown inFig. 9. The mean recognition rates for
the three cases are shown inFig. 10. Table 1 contains a
comparative analysis of the mean and standard deviation for
the obtained recognition rates. The proposed fuzzy fisher-
face method outperformed other classifiers and this occurred
consistently in all cases.Fig. 11 summarizes optimal clas-
sification (recognition) rates obtained for optimal values of
“k” where the experiments were repeated for 10 randomly
selected data subsets. The optimal number of neighbors(k)

was determined by repeating the experiment for successive
values of “k” and choosing suchk0 that returned the best
classification rate. In addition,Table 2shows the minimal

Table 2
Minimal and maximal values the of recognition rates—seeFig. 11

Min Max

1st random data set 94.5 96.5
2nd random data set 94.5 95.5
3rd random data set 94.5 96.5
4th random data set 95.5 96.5

and maximal values of the recognition rates being reported
in Fig. 11.

Interestingly, while the number of neighbors exhibits
some impact on the performance of the classifier, it is
rather limited and does not affect the method in any adverse
manner. The 1% difference still makes the fuzzy fisherface
outperform the two other methods.

4.2. Yale face databases

The Yale face database contains 165 face images of 15
individuals. There are 11 images per subject, one for each
facial expression or configuration: center-light, glasses/no
glasses, happy, normal, left-light, right-light, sad, sleepy,
surprised and wink. Each image was digitized and presented
by a 61× 80 pixel array whose gray levels ranged between
0 and 255. Some of face images coming under 10 differ-
ent conditions except wink Samples of the Yale databases
are shown inFig. 7(b). The training and testing set are se-
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Fig. 9. Recognition rates for ORL database: (a) case 1, (b) case 2, (c) case 3.
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Fig. 10. Comparison of recognition rates for the ORL database.

Fig. 11. Recognition rates treated as a function of “k” in four random test data sets (case 1).

lected randomly. This split procedure has been repeated for
the 10 times in each case. Here, we determined 40 eigen-
vectors representing the best performance in these ten ex-
periments. The number of discriminant vectors was set up
to be 14.Fig. 8(b) shows some of the fisherface image ob-
tained by the proposed method. The experiment results for
face recognition are shown inFig. 12. The mean recog-
nition rates for three cases are shown inFig. 13. Table 3
lists the comparison of mean and standard deviation for
recognition rates. Again, as summarized in these figures
andTable 3, the proposed method outperformed other clas-

Table 3
Comparison of mean and standard deviation of recognition rates
(Yale)

Eigenface Fisherface Fuzzy fisherface
(PCA) (%) (PCA+ LDA ) (Fuzzy+ PCA+

(%) LDA (%)

Case 1 79.6 ± 3.44 91.86± 3.57 94.8 ± 3.04
Case 2 76.66± 4.16 91.67± 5.15 95± 2.48
Case 3 72.22± 3.59 87.44± 3.14 89.33± 2.41



1728 K.-C. Kwak, W. Pedrycz / Pattern Recognition 38 (2005) 1717–1732

1 2 3 4 5 6 7 8 9 10
50

60

70

80

90

100

PCA
Fuzzy+PCA+LDA
PCA+LDA

1 2 3 4 5 6 7 8 9 10
50

60

70

80

90

100

PCA
Fuzzy+PCA+LDA
PCA+LDA

1 2 3 4 5 6 7 8 9 10
50

60

70

80

90

100

R
ec

og
ni

tio
n 

ra
te

R
ec

og
ni

tio
n 

ra
te

R
ec

og
ni

tio
n 

ra
te

random data set 

random data set 

random data set 

PCA
Fuzzy+PCA+LDA
PCA+LDA

(a)

(b)

(c)

Fig. 12. Recognition rates for the Yale database: (a) case 1, (b) case 2, (c) case 3.
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Fig. 13. Comparison of recognition rates for the Yale database.

Table 4
Comparison of mean and standard deviation of the recognition
rates (CNU)

Eigenface Fisherface Fuzzy fisherface
(PCA) (%) (PCA+ LDA ) (Fuzzy+ PCA+

(%) LDA) (%)

Case 1 77± 3.91 94.8 ± 3.29 96.8± 1.68
Case 2 75± 5.13 95.75± 2.37 97.5± 2.35
Case 3 74.83± 3.28 91.67± 4.0 95.17± 2.88

sification techniques. Since PCA retains unwanted varia-
tions due to lighting and facial expression, the recogni-
tions show a poor performance. In contrast, we observe that
the proposed method can be useful in large illumination
variation.

4.3. CNU (Chungbuk National University) face
databases

The CNU database contains 100 face images from 10
individuals in different states. The total number of images
for each person is equal to 10. They vary in face pose and
light variation. The size of original image is 640× 480.
Each image was resized by a 112× 92 pixel array whose
gray levels ranged between 0 and 255. Samples of the
CNU databases are shown inFig. 7(c). The training and
testing set is selected, by randomly choosing three cases
as already experimented with the ORL and Yale databases.
This procedure has been repeated for 10 times in each
case. Here, we determined 40 eigenvectors representing
the best performance in the 10 times experiments. Here,
the number of discriminant vectors is 9.Fig. 8(c) shows

some of the fisherface image obtained by the proposed
method. The results are reported in the same format as
before.

Fig. 14 shows the recognition rates for three cases, re-
spectively.Fig. 15 shows the mean recognition rates for
three cases. Again, the findings are consistent with those
obtained so far: the fuzzy fisherface approach outper-
formed the two other methods used in this classification
(Table 4).

5. Concluding remarks

We have proposed a generalized version of the fisher-
face method for face recognition by including refined infor-
mation about class membership of the binary labeled faces
(patterns). This in turn allowed us to compute fuzzy within
and in-between class scatter matrices forming the core por-
tion of the original fisherface classifier. By doing this we
were able to reduce sensitivity of the method to substantial
variations between face images caused by varying illumina-
tion, viewing conditions, and facial expression. Experimen-
tal results showed a consistently better classification rates
in comparison to other “standard” methods such as eigen-
face and fisherface when applied to ORL, Yale, and CNU
face databases. In particular, it is worth stressing that the
method developed in the setting of fuzzy sets revealed more
robust characteristics as far as the uncertainty occurring due
to large variation including illumination and facial expres-
sion (Yale and CNU) is concerned. The reason why the pre-
sented method yields a better performance can be attributed
to the fact that fuzzy sets can efficiently manage the vague-
ness and ambiguity of the face images being degraded by
poor illumination component.
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